
-185 964 THE EFFECT OF RESPONSE SCALING ON THE DETECTION OF
SINGULARITIES IN MULTI (U) FLORIDA UNIV GAINESVILLE
DEPT OF STATISTICS A I KHURI SEP 87 TR-291

UNCLASSIFIED N8814-86-K-8859 F/G 12/3 NL

El,



1.0 :~1128 J2 5I I'll1112
1.258

A~Awl



FIECOPY i
REPORT DOCUMENTATION PA.GE 1[-A)IITUTN;

01' 1 )RE ( (AIPLETING 1-0AM
REP-QR uE!v9N 2 GO\.1 AL EIN O 3 14EC PtENT ., CATALOG NUMOkR

.1~~~ 11) 2 1 - -.---- - - - - --- -_ _ _ _ _ _
4 WL , , It ' p -,P OFiWRT 8 PFRIOLGCG,)EREO

II t2 I :,I e 'I t Resjl111n ;O % I in on' (1 tile IDetec tion
-11) I 1hii lviielL inl Iu tireLs nlsk EsL ilIt i o l4 I ILn 6 P;Li;ORWN~G ORG. REPORT N,,4daER

TM AGT OR., 8 CONTRA2:' OR GRANT NUMBER(*)-

A. 1. Kh-Ari NOQ0l 4-86-K-0059
R&T !A14552 --- 01

I Act. No. 49101023459
Li 9PER CRWN3 ORGAIIZ ATIC)'. NAME AND ADDRESS 10 PRO,-,PAM ELEMENT PROJECT, TASK

AREA & WORK( UNIT NUMBERSEr Ucxirtnet ot St ItiStics
-uc Ie-ir Scilences Ccnter, Universi Lv of Florida

-Gii:'esv'ill e , FL -32olI__________ _______

-~.- ~ 09P, IC7F *At:NDDUS 12 REPORlT DATE

01' icek 0 t Naval i~csen rchi September 1987
it 1IC-.11 t iC.! SC ilnres Di vi s ion (Code 4! 1 1 1) NUMR OF PAGES

A\r-l i n:'toll VA 22217-5000 26
14 kA Nr, NQo A.;EN -Y NjAME a ADORESSI1 different from, Controlig Olfic.) 15S SECURITY CLASS. (of this. report)

!~ EDU L E

15 C RI1<~.7 S7TICMEN .03d Report)

Ap;prlved for Public Release: Distribution Unlimited

- * ~7 C N RBU TI_1N S'ATEMEN T -tf ha abstract anfteJ di, UUck 20., 1dif^t~ntroo Hepo~t)

'a SUPPLEPA.N-ARi, P4TES

SK E, 1S ClI', r--.rs Wl. It nec*.sary and Idordih' by bk'.sA -m.

* . >baIt ir-pofll moe B ox-DraI)Cr est imat ion criterion, round-off error;

1 i'oa deenden ius , il 1 odi oigcgnva ilye analysis.

20 A STR ACT ' I n, .,, e r .id. It n-ce..aY AnId Id.Oify by bfock n,.ber)

'bI'l i i per 0ro p I se s Scat1 ill o f the responses before a ppl y lg the ei genvalvu

inavsswhich ii ulsd to detect singularities in multiresponse modeling.

Thte pa p,- r shows-; h )%w the ul genva 1 ue a nalys is ca 0l be mod if ied so that it applies

tII the scaled responses.

DD JA14 , 1473 E TJIrON JF I NOV 55 IS OBSOLETE
t~~14 ;~,V! Unclassified __________

'ECURITY CLASSIFICATION OF THIS PAGE ("On [)at& Entered)

%@ %%



*e...

THE EFFECT OF RESPONSE SCALING ON THE DETECTION OF SINGULARITIES IN

MULTIRESPONSE ESTIMATION

By

Andri I. Khuri

* Department of Statistics

University of Florida

Gainesville, Florida 32611

4.

N. ~DISTWIUTION STA2J

AppwfewW fm puib~s Mrlin;

_______.. 00' DTIC'-. ELECTEll
Technical Report Number 291

O CT 1 5 t987
Department of Statistics

University of Florida

Gainesville, FL 32611

September 1987

87 10 7 O1



THE EFFECT OF RESPONSE SCALING ON THE DETECTION OF SINGULARITIES IN

MULTIRESPONSE ESTIMATION

A. I. KHURI

Department of Statistics
University of Florida

Gainesville, Florida 32611

ABSTRACT

Box and Draper (1965) introduced a criterion for the estimation of parameters from a

*multiresponse model. This criterion can lead to misleading results in the presence of linear

relationships among the responses. Box et al. (1973) proposed a procedure for detecting the existence

of such relationships when the multiresponse data are subject to round-off errors. The procedure,

however, can be adversely affected by large differences in the orders of magnitude of the responses as

well as in the units of measurement on which the responses are expressed. It is, therefore, necessary to

. scale the responses prior to the application of that procedure. In this article, I discuss the effect of

scaling on the implementation of the eigenvalue analysis by Box et al. (1973). Two numerical

d: examples are given for illustration. ''

KEY WORDS: Multiresponse model; Box-Draper estimation criterion; Round-off error; Linear

dependencies' Ill conditioning; Eigenvalue analysis.
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1. INTRODUCTION

- Consider the general multiresponse model

j -' l Yui = 9 i ( u , q )  +  cui, u- l1,2,...,n; i= ,2,...r, 1 1

where

.th th
Yui is the value of the i response at the u experimental run,

'Ii(Xu , q) is the expected value of Yui,

. u is a vector of values of k input variables, denoted by 1, x2 "". xk, at the u-t

experimental run,

0 is a vector of p unknown parameters, and

.ui is a random error associated with Yui"
• .th

Let and c denote, respectively, the vector of values of the i response and the associated

vector of random errors (i=1,2,...,r). The multiresponse model in (1.1) can be written in the form

Y = (1.2)

where Y [yI Y2 Yr], F is an nxr matrix whose (ui) element is li(_3u,q) and

SAccording to Box and Draper (1965), estimates of the elements of 0 can be obtained by

minimizing the determinant, r(q)J, of the matrix r(.) with respect to 0, where

r(q) = (Y - F)'(Y - f). (1.3)

We refer to this method of estimation as the Box-Draper estimation criterion. Box et al. (1973)

pointed out that when linear relationships exist among the columns of Y, the matrix r(.) becomes

singular, that is, L'(9) = 0. In practical situations, the multiresponse data are subject to round-off

errors, which cause the determinant of F(q) to be different from zero and to change as 0 is changed.

Minimization of this determinant under such conditions will produce nonsensical results (Box et al.

1973 and McLean et al. 1979).

In order to detect singularities in F(O), Box et al. 1973) proposed a procedure in which the

-2-
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eigenvalues of the matrix DD' are examined, where

D = Y'(In - Jn/n). (1 4)

In (1.4), in and Jn denote the identity matrix and the matrix of ones, respectively, both of order nxn.

Box et al. (1973) showed that m linearly independent relationships must exist among the responses if

and only if the matrix DD' has a zero eigenvalue of multiplicity m. As mentioned earlier, none of the

eigenvalues of DD' will be exactly equal to zero because of round-off errors in the multiresponse data.

Small eigenvalues of DD' should, therefore, be examined to determine if they correspond to linear

dependencies among the responses.

If A* is a small eigenvalue of DD', then in the presence of round-off error only and for a

Esufficiently small 3, the expected value of A* is approximately equal to

E(A*) =(n-1)0~,(.5
• = (1.5)

where Ure - 32/3 is the round-off error variance. Formula (1.5) is valid under the assumption that

the round-off errors are statistically independent and have the uniform distribution U(-4,6). See Box et

al. (1973). An approximate upper bound on the variance of A* was given in Khuri and Conlon (1981)

as

Va( 1 5 + nr(nr-1) - (n-I) 1 f.e (1.6)

Formulas (1.5) and (1.6) can be used to determine whether a small eigenvalue of DDF should

be considered as zero, an indication of a singularity in the matrix r(q) in (1.3). Box et al. (1973)

discussed possible remedies when such a situation occurs, which include dropping some of the responses

that are influential contributors to the singularity.

Quite often, the responses have different units of measurement, which cause them to have

widely different orders of magnitude. Furthermore, the round-off errors in all the responses may not be

identically distributed as U(-4,6). All of these factors can seriously affect the eigenvalue analysis

described earlier as will be seen in more detail in Section 2. To remedy this numerical inconsistency,

the responses should be scaled before proceeding with the eigenvalue analysis. This action will
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obviously alter formulas (1.5) and (1.6) for the expected value and variance of a small eigenvalue of

DD'. A modification of these formulas will be presented in Section 3.

2. SCALING OF THE RESPONSES AND MEASURES OF NEAR SINGULARITY

In a general multiresponse situation, the response variables usually have distinct physical

meanings, distinct units of measurement, and widely different values. Such scale imbalance makes it

difficult to interpret the results of the eigenvalue analysis as described in Section 1. To avoid this

difficulty, the responses must be scaled first.

th
Let W be an rxr diagonal matrix whose i- diagonal element, wj, is defined as

wi = - i)2 3, i=1,2 .... (2.1)

.th th nwhere yui is the value of the i response at the u- experimental run and Yi= (L yuj)/n. Consider
u=I

the nxr matrix S given by

S YW -1  (2.2)
%4%

where Y is the matrix of multiresponse data in (1.2). The matrix S is a linear transform of Y, which

results from dividing the i column of Y by wi(i=l,2,...r). It is known that estimates of the

parameters from the multiresponse model (1.2) are invariant under this scaling convention (see Bates

. and Watts 1985, p. 130). Using (2.2) in (1.4) we obtain

'%%

12 -W '(, 2(2.3
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B = S'(Qn - Jn/n). (2.4)

From (2.3) and (2.4) we have

" :B =W '11 , (2.5)

or equivalently,

B= (in - Jn/n)YW " . (2.6)

We note that the columns of B1 have unit lengths and that the matrix BB t is in correlation form.

* Furthermore,

W 1 DD'W 1  (2.7)

Thus, when the responses are scaled as in (2.2), the matrix DD', used in the eigenvalue analysis of Box

et al. (1973), is transformed into the matrix IB t.

In case of a singularity in the matrix 1(q) (see 1.3) and in the presence of round-off errors in

the multiresponse data, both DD' and BB' are near singular, that is, their determinants are close to

zero. In this case, the columns of D' as well as those of B' are nearly linearly dependent, or

multicollinear. In other words, if a singularity exists in the matrix I'(q). then both D' and B1 will

suffer from ill conditioning. Their degrees of ill conditioning, however, can be quite different.

As a measure of ill conditioning of the matrix B t and that of D', I use the condition numbers.

p.'.' K(B') and (D'), respectively. By definition, the condition number of B1 is

'Op = emax (P )emn(P')]



where emax(BB') and emin(BB') denote the largest and smallest eigenvalues of the matrix BB3. The

condition numth,:r of D' is simiiarly defiued. The larger the condition number, the more ill conditioned

the matrix. Another indicator of ill conditioning is provided by the variance inflation factors (VIF).

Since the columns of Bf are -entered and scaled for unit length, the VIF's associated with this matrix.

are, by definition, the diagonal elements of the matrix (BB ) Large VIF's indicate ill conditioning

and can help diagnose its nature. More specifically, large VIF's correspond to responses that are

involved in the multicollinearity in the columns of B'.

It was mentioned earlier that the degree of ill conditioning of Df can be quite different from

that of B' To see this, let us consider (2.5) and the inequality given in Belsley et al. (1980, p. 182)

Then,

iC(_') > (D'r/t(W). (2.8)

Since W is diagonal, its condition number is given by

-(W) max(wi)/min(wi), (2.9)

where min(wi) and max(wi) denote, respectively, the smallest and largest of the wi's defined in (21).w i i

Inequality (2.8) can be rewritten as

C(@) K(D') mn(wi)/max(w.)] (2.10)

If K(Dr) is very large and min(wi) is very small as compared to max(wi), then (B')) can be small,
I i

but need not be. Thus, ill conditioning can be improved by the scaling convention of (2.2), especially

:.-. ,:-6-
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when the wi's in (2.1) are widely different. As a matter of fact, this kind of scaling has "near-optimal"

properties in the sense that

c(B') < frmin [K(B'G)], (2.11)

where Q denotes the set of all nonsingular diagonal matrices of order rxr (see Belsley et al. 1980, p.

185). In particular, from (2.5) and (2.11) we conclude that

• ic (Bt) < n(Dt). (2.12)

Thus. ,(B') cannot be off by more than a factor of 4- from the m*iima condition number given on

the right-hand side of (2.11).

Improving the conditioning of D' through the transformation (2.5) is desirable since a severely

ill-condtio.ed matrix is sensitive to round-off errors in its entries (Maron 1982, p. 210). It follows that

the eigenvalue analysis of Box et al. (1973) can be safeguarded from the effects of ill conditioning by

adopting the scaling convention of (2.2). Of primary importance in that analysis is the magnitude of

the smallest eigenvalue of the matrix DD', where D is given in (1.4). This can be quite different from

the smallest eigenvalue of BB' as lemma 2.1 shows, especially when the wi's in (2.1) are markedly

different.

Lemma 2.1. Let B, D, and wi(i=1,2,...,r) be defined as in (2.4), (1.4),and (2.1), respectively. Let

emin(.) and emx(.) denote the smallest and largest eigenvalues of a symmetric matrix. Then,

2 m2 _ (DD'
.min(w ) <Bm B max (w). (2.13)

e ~ i*[...[ m in

Proof. See Appendix A.

In (2.13), _DD and 1BB are computed using rounded-off response values. Consequently, both

-7-
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matrices are nonsingular even when the responses are linearly dependent. From (2.13) we note that

emin( .Dl ) can be heavily affected by extreme values of wi(i=1,2,....r). By contrast. emin (BB') < 1

since BB' is in correlation from (the determinant of this matrix, which is the product of its

eigenvalues, is less than or equal to one by Theorem 8.7.6 in Graybill 1983).

3. THE EXPECTED VALUE AND VARIANCE OF A SMALL EIGENVALUE OF BB'

IN THE PRESENCE OF ROUND-OFF ERRORS

In this section, the expected value and 'ariance of a small eigenvalue of BB in (2.7) are

derived when round-off error is the only error present. The derived values can be used in an eigenvalue

analysis to determine whether a small eigenvalue of BB' is in fact a zero eigenvalue in the absence of

round-off error. By (2.7), BB' and DDf are of the same rank. Hence, if BB' has a zero eigenvalue,

then so does DD, which indicates the presence of a linear relationship among the responses.

.th th
Let yui be the exact i response value at the u experimental run, and let yui be the value of

Yui rounded off to a certain number of decimal places (u=1,2,...,n; i=1,2,...,r). In the presence of

round-off errors only we have the model

Y" Y + A, (3.1)

where Y and Y are the nxr matrices, (Yi) and (yui), respectively, and A is the nxr matrix (AYui)

.th
of rounding errors in the response values. Let A. be the vector of round-off errors for the i- response

(i=12..r), that is,

i= (AYi' -Y 2 i.  Yni)' i=1,2.r. (3.2)

4 i ,,,

W-8-
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The elements of - are assumed to be independently distributed as uniform random variates. .

Thus,

"t' E(Ai) = 0,,2 r 3:

2 "1~ , ... r 33

Va( i) = in,

where = 62/3 is the rounding error variance for the th respcrse. We also assume that the .-
th

statistically independent. If the values from the i L response are rounded off to mi decimal places.

then 6i= 5110-(mi+l)], i=1,2,....r.

i Consider the scaled multiresponse data matrix S in (2.2). The change, AS, in S due to round-

* off errors is equal to

AS= Y (W' 1 
- YW "1, (3.4)

where W" is an rxr diagonal matrix whose i h diagonal element, wj, is the value of w. that resultsth t

from using the rounded-off i t response data in (2.1), i=1,2 .... r. Let sui denote the (u.i) t h element of

S (u=1,2.n; i=1,2.r). From (2.2) this element can be written as

= Yu' IV__ (Y', - )2 u=1, 2.,n; i 1, 2.... 3.5'

n
where y= yvi/n. The right-hand side of (3.5) is a function of v - ' denoted by g

v=1

'Y2i.' Yni)' u=l,2 .... n. If As is the (ui) element of AS, then a first-order approxirnatum -0

Asui is given by

o' ['.n O9guAs Ii _ 9 Ov "3v'

v=l vi

-9-

-p."¢



9W

. 'o" ir ' At. i.% A with resp ct to • . -.....

.e, . '-e al :n The absence of round-off error. the matrix B B n t2.7, haus a zero

!:i, !. , tm : i, ' it m, t . This means that m lineary independent relationships must -xl.t

t;, ' ::ie , I- S [,IT - a., .. atm e an orthonornial set of eigenvectors of BB for the

..-:'0":a, r,,. If ";ie 'urdedoii f i tilt iresponse data matrix. Y', is used in the computation of 1, :n
'.' ~en tr.1 x F3_1' Ail! hae m small eigenvalues. Let A* (j=1,2.m) denote the Jth smallest

t ,e ei zen";lll Phen. for sutic(ientl\ small 6 , .6r we have

a S Si, I Jnn'ri)( \Sa .. j l,2..., m, (3.7

A~eer "; r are the parameters of the uniform distributions associated with the round-off errors

'rom the r responses ,see \%ilkinson 1963, p. 138; Khuri and Colon 1981, p. 372). The symbol in

3.71 means that the two sides are of the same order of magnitude. The eigenvectors, al1 42.'

that appear in 3,7' can be approximated with i. am, an orthonormal set of eigenvectors of

BB' Which correspond to Al' A. , respectively. We can then write

-L-"A:--' i.[(-S)'([ n  - jn/n)(A\S)ij, j--1,2,.,m(38- i/)(in. =,. , (3.8)

'sing the expression in (3.S), it can be shown (see Appendix B) that we approximately have

r
,. (n-2) j-... m, (3.9)

i= i

w here 7r2 = 2) 'whe z '3 is 'he rounding error variance for response (i=12 ... , r),

*I 0

p-1-



Var (AJ) < + n(n-1 r 2

+ 2 r. rta'.2 2  [ =01,2a2/w 2
-2n % 2 (n-2)2 -i2 j=1,2 .... m, (3.10)

where aii is the it h element of i (i=1,2,...,r; j=1,2,...,m) and r i is given by

•w + ]i ..... r. (3.11)

If A* is of the same order of magnitude as E(A?), then we may treat A. as a zero eigenvalue
.3 J .3

and conclude that a linear dependency exists among the responses. The elements of the corresponding

eigenvector, Aj, may be used to identify the linear dependency. The upper bound in (3.10), denoted by

u., can be used to obtain the standardized values

!J

r= [:- E(A)]/I{uj j=1,2,...,m. (3.12)

Large values of )7i clearly indicate that A: does not correspond to a zero eigenvalue of B B . Small
J

values of ij, however, do not necessarily imply a zero eigenvalue since u. is just an upper bound to the

true variance of A.
.J

4. NUMERICAL EXAMPLES

Two examples are presented in this section to illustrate the implementation of the eigenvalue

analysis described in Section 3.

4.1 Example 1

Let us consider the data on the thermal isomerization of a-pinene at 189.5', which was

reported in Fuguitt and Hawkins (1947) and analyzed by Box et al. (1973). The data are reproduced

I -l
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in Table 1. In this example, values from the five responses have been recorded to the nearest .10, hence

= = .05, where the 6i s are the parameters associated with the uniform

distributions of round-off errors. The matrix BB' is given in Table 2 along with its corresponding

variance inflation factors and the condition number, K(_B). The eigenvalues of B131 , their

* corresponding expected values, values of r/j (see 3.12), and the matrix of orthonormal eigenvectors of

B'are given in Table 3.

The first and second smallest eigenvalues of BB' in Table 3 are of the same order of magnitude

, as their expected values. The associated values of 7j (j=4,5) are very close to zero. These two

eigenvalues can, therefore, be regarded as equal to zero. The elements of the corresponding

* ~ eigenvectors (the last two columns of the matrix in Table 3) can be used to define two linearly

independent relationships among the five responses. The third smallest eigenvalue of BB', namely

.0027773 is not of the same order of magnitude as E(A\). The associated 13 value, however, is

Irelatively small. This eigenvalue corresponds to a linear relationship among the expected values of the

responses (see Box et al. 1973, Section 6). The remaining two eigenvalues, namely .881599 and

4.11521, are much larger and have large Y7. values (j=l,2). Hence, they are not associated with any

linear relationships among the responses or among their expected values.

The large variance inflation factors and condition number in Table 2 indicate that the matrix

B is severely ill conditioned, hence it is very sensitive to round-off errors. We note that the responses,

Y. Y'), Y4 and y5 are quite involved in the linear dependencies since their corresponding variance

inflation factors are extremely large. This is also supported by an examination of the elements of the

h.:.- . last two columns of the matrLx of eigenvectors in Table 3. In both columns. the third element, which

corresponds to Y3, is the smallest in absolute value.
ot -v31

4.2 Example 2

Research was conducted by Ahmed et al. 1183) at the 1niversity of Florida in order to

develop acceptable fish patties from sheepshead harvested along the Florida coas t. DebonTed and

-12-
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washed sheepshead flesh was mixed with varying proportions of x1  sodium chloride, x2 = sodium

-A" tripolyphosphate, and x3 = sodium alginate. Of interest was the determination of the effects of these

three input variables on the texture quality of cooked patties. This was measured by the values of four

response variables, namely, y1 = breaking force in grams, Y2 = texture firmness, Y3 = texture

preference, and Y4 = flavor. The last three responses were measured using a nine-point rating scale

with 1 being least desirable and 9 most desirable. The response values are given in Table 4.

The variance inflation factors in this example are 2.374, 28.653, 24.244, 1.768, and the

condition number of the matrix B1 is P(B') = 12.552, an indication of moderate ill conditioning. The

values of Y7j in (see 3.12) are r/1 = 1909.61, r72 = 392.03, r= 214.702, and 74 = 12.12. Hence, no

e eigenvalue of BB' can be regarded as equal to zero.

It is interesting here to note that the eigenvalues of the matrix BB' are .0192, .3397, .6202,

" ""and 3.0210. By contrast, the eigenvaues of the matrix DD' for the unscaled responses are .2871,
I

6.8863, 15.8812, and 2,009, 864 with a condition number, x(pl) = (2,009,864/.2871)2 = 2645.86. The

latter number greatly exceeds i(B'). This shows that scaling of the responses can improve the

-- conditioning of the matrix BB', which, in turn, reduces its sensitivity to round-off errors.

5. CONCLUDING REMARKS

The scaling convention proposed in (2.2) is recommended to be used prior to the application of

the eigenvalue analysis for detecting linear dependencies among the responses. Scaling removes

inconsistencies in the units of measurement by putting all response variables on a common scale. An

eigenvalue analysis applied directly to the original data, e.g., the data of Example 2 in Section 4.2, is

not always meaningful because the responses may not have the same scale.

As was observed in Example 2, round-off error can be reduced by scaling. To see this in

general. we note that if the wi 's in (3.9) exceed unity and if the a's are equal to are then the

-13-
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expcte vaue f A isles thn (-1) 2 The latter quantity is given in Box et al. (1.973) as the

expected value of a small eigenvalue of DD'.
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Appendix A: Proof of the Double Inequality (2.13)

From (2.5) we have that

DD WBB'W, (A.l)

where W is the rxr diagonal matrix whose i Lhdiagonal element, wi, is given in (2.1). Then, from

(A.d) and Lemma 2 in Khuri (1986, p. 355) we can write

* Cni,(PP) emin,(PB')emi (W 2 )

e e.min (t~t') min(w?). (A.2)

Let e+i(~ denote the smallest positive eigenvalue of a symmetric matrix. Since the nonzero

eigenvalues of WBB1W are equal to those of B ,2B then

e i(WBB'W) e+ em(B W 2 B)

<e~~( Bea( 2  (see Khuri 1986, p. 356) (A.3)

=e (]D- )max (wi)

The double inequality in (2.13) now follows from (A.1), (A.2), and (A.3).

E0.



Appendix B: The Derivation of the Expected Value in (3.9) and the Upper Bound in (3.10)

i) The Expected Value in (3.9)

From (3.5) we have that

gu(Yli' Y i .... Yni) = Yui/ [vj (Yvi - Yi) ] u=1,2,....n; i1 2,...r. (B.I)

By taking the partial derivatives of gu with respect to its arguments we get

(1/wi) - (Yvi - Yi)yui/wi v=u

8gu = (B.2)
0yvi

( (Yvi - Yi)yui/Wp '  v#u

where w. is defined in (2.1). Let 0ui be the nxl vector

"4"9• ""{0g gu (9gu ")r
ui= (a y 2i .... - i (B. 3)

We can then write (3.6) in the form

Au -ui -Ai' (B.4)

L-. where A is defined in (3.2). A first-order approximation of AS = (Asui) in (3.4) can then be

expressed as

AS 1_ : 1 2 A ) .. PrAr]' (B.5)

-16-
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where

= "  i ' "(B.6)

From (3.3) and (B 6) we get

E(oi i)= 0, i=1,2.... r"f - t 2 (B. 7)

Var(OiAi) = oi ii i=1,2,....r,

..where a? 6?/3 is the round-off error variance for the i L response (i=1,2,....r).

,*-. Let us now write the expression in (3.8) as

A: b! (In - Jn/n), j=,2... m. (B.8),.,....i _j ,. /n ,
.1 -J -

where

bj = (AS) i j

%, aijtAi, j=,2,... m, (B.9)"- - 1--i

hwhere ii. is the i element of i;. From (B.7), (B.9), and the fact that the A's are statistically

independent we approximately have

E(b.) = 0, j=,2 .... m

'-'-"" r ' (B .10)¢., Var(bj) = 1: j..r¢ = 1, 2 ....m.

The expected value of A* in (B.8) can then be approximately written as

r
E(A.j) = ii 'i--

* 1"

@4l
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ruru. u- -w-W2.--i ,.- .- % .- -.- " . . . s--- t . . l-. - .-- -, r - l

.r ..

= _ 2 2 trl 0 In .Jn/n)(ij],_ i 1, j l2-... (B. 11)

Since the u row of ( I(i= ,2 .., n, i=l,2...,r) is of the form given by B.2) and B.3). then it is easy

to show that

In- Jn/n)o - !n 1 _.n - . i z = .2 .... r (B12)
3

W:,.

where H is a symmetric n xn matrix whose (p,v) - element is

h = (Y - i)(y V i),  1,2,...,n; i=1,2,. .. r. (B.13)

We note that JnH = Q for i=1.2,....r. It follows that

%2

tr o!(!. n/n) i = (n-2)/w, i=1,2... r. (B.14)

Formula (3.9) follows from (B.11) and (B.14)

ii The Upper Bound in (3.10)

From (3.8) we approximately have

Var(AJ E F!(AS)'(In- .in/n))(AS)aj 2  [E(A.) 2 . j l,2.m. (B.15)

We note that

S.2
E (AS)'(In-n/ni)(_%S). 2 < E "1(AS)(2 (B.16)

1-18-
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since (.AS)'(.AS) - (AS)'(1n - J/n)(AS) is a positive semidefinite matrix. We also note that

since i!(.S)f(S)i. is less than or equal to the largest eigenvalue of (AS)'(zS), Lancaster (1969, p.

109).

From (B.4) and (B.17) we approximately have

E [4!AS'(s.] 2 < E A ~(ii)2]

-i EL) Wi A-j] j=1,2,...,m. (B-18)

Note that

E,(zA4 )2 -E n (A ± 2 (Ay i2(AYvid)2], =,,..r (B. 19)

Since Ayu has the uniform distribution U(-6i, b6), i=1,2,..,r, then for u=1,2,...,n,

E(Ay ui -2 6?/3 ,3.2..,

E9/Auy -)4 =1,2,.r.

Furthermore, Ay ui and .Ayvi are statistically independent for u~v. Formula (B.19) can therefore be

%~



written as

E(4A )2 -~ + n(n-1)}j ,.,r. (B.20)

From (B.2) and (B.3) we also have

= - (v - i-, u ,.,n; i 1, 2,..., r (B.2 1)

Thus,

Oiu Tr, 2=,.,r, (B.22)
u=1

where

=[(n-1)w? + ny?]iw ', i=1,2,...,r. (B.23)

Using (B.20), (B.22), and (B.23), inequality (B.18) can be expressed as

'aE [!A)(Si2< E r Ai]

E EL (4!i) 2 + 2 ZrTe4A)4 %

- _+ n(n-1)]Z1Q + 2

n(n-1)] r~r + 2n -r 22a (B.24)
i<E

-20-
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since by (3.3),

,4 = tr(o?!n) =na? i= 12,...,r.

From (B.15), (B.16), and (B.24) we finally get

VarA:)< +n(n-1) r i-a + 2n j1, 2,..., m. (B.25)

By substituting the mean of A: from (3.9) in (B.25) we obtain the upper bound given in (3.10).

J J
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Table 1. Data* for the Isomerization of a-Pinene at 189.5' (Example 1)

SY Y3 Y4 Y5

't-pinene dipentene ailo-ocimene pvronene dimer

S .57.3 2.3 .4 1 r7.5

76.4 15.6 4.5 .7 2.8

65.1 23.1 5.3 1.1 5.8

50.4 32.9 6.0 1.5 9.3

37.5 42.7 6.0 1.9 12.0

25.9 49.1 5.9 2.2 17.0

14.0 57.4 5.1 2.6 21.0

4.5 63.1 3.8 2.9 25.7

*Source: Box et al. (1973).
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Table 2. The Matrix BB' and its Measures of Ill Conditioning (Example 1)

Yl Y') Y3 Y4 Y5

Y 1 1.0 -. 9997 -.3679 -.9996 -.9852

Y9  -.9997 1.0 .3805 .9993 .9817

BB' -.3679 .3805 1.0 .3557 .2105

Y4 .9996 .9993 .3557 1.0 .9868

".' -. 9852 .9817 .2105 .9868 1.0

-. ' Variance

- - inflation 224,115 138,165 370.77 3,781.55 20,624.1

factors
f--.

Condition

number K(B') = 1258.08
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Table 3. Values of A. E(A:) ?7., and the Eigenvectors of B' (Example 1)

Sj1 2 3 4 5

A: 4.11521 .881599 .0027773 .0004080 .0000026

E(A:) .0002361 .0004034 .0000732 .0006083 .0000068

-7 -153.018 32.7703 .100552 -.007451 -. 000157

Orthnormal .492148 -. 059831 .109986 -.399853 -. 763041

eigenvectors -.492328 .04506 1 -.49 1572 .39444 -598629

of BB' -.206855 -. 966695 .14714 -. 010939 --030677

0-.491659 .073606 -.253694 -.82648 .073646

-. 480505 .233392 .8 12557 .036687 -. 2303 19

-25-



Table 4. Values* of the Breaking Force and Sensory Response Variables (Example 2)

Y 1 (g) Y2* Y3 Y

Breaking force Texture firmness Texture preference Flavor

637.5 4.25 4.25 5.13

1020.8 4.75 4.88 5.38

" 1529.2 5.75 5.50 5.63

1445.8 6.63 6.25 6.50

345.0 2.75 3.38 3.88

441.7 3.38 3.50 500

576.7 4.88 5.13 5.00

531.7 5.38 5.13 5.75

380.0 4.63 4.63 3.25

575.0 5.38 5.50 5.63

676.7 5.25 5.38 4.88

845.0 5.75 5.38 6.13

1161.7 6.38 6.00 5.50

585.0 3.13 3.25 5.25

886.7 5.25 5.50 5.75

1115.0 5.50 5.13 5.75

825.0 5.13 5.25 3.88

*Source Ahmed et al. (1983)

**The response values are based on a scale from I to 9.

.... ...

\ .r.
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